Refractive index profiling of direct laser written waveguides: tomographic phase imaging

نویسندگان

  • A. Jesacher
  • P. S. Salter
  • M. J. Booth
چکیده

We present a technique to measure the refractive index profile of direct laser written waveguides. This method has the potential for straightforward implementation in an existing laser fabrication system. Quantitative phase microscopy, based on the Transfer of Intensity equation, is used to analyse waveguides fabricated with an ultrashort pulsed laser embedded several hundred micron below the surface of fused silica. It is shown that the cumulative phase change induced by the waveguide perpendicular to its axis may be monitored in real-time during the fabrication process. Results are verified through comparison with interferometry. Tomographic measurements using illumination from a high numerical aperture condenser lens are used to infer the waveguide cross-section. Results are compared with measurements of the waveguide cross-section from a third harmonic generation microscope. © 2013 Optical Society of America OCIS codes: (130.2755) Glass waveguides; (250.5300) Photonic integrated circuits; (120.5050) Phase measurement; (110.6955) Tomographic imaging ; (220.4000) Microstructure fabrication References and links 1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). 2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 – 1731 (1996). 3. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009). 4. P. Oberson, B. Gisin, B. Huttner, and N. Gisin, “Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,” Appl. Opt. 37, 7268–7272 (1998). 5. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41, 4360–4364 (2002). 6. R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, “Ultrahigh resolution index of refraction profiles of femtosecond laser modified silica structures,” Opt. Express 11, 775–781 (2003). 7. A. Streltsov and N. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26, 42–43 (2001). 8. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol. 21, 246–253 (2003). #191570 $15.00 USD Received 31 May 2013; revised 11 Jul 2013; accepted 12 Jul 2013; published 7 Aug 2013 (C) 2013 OSA 1 September 2013 | Vol. 3, No. 9 | DOI:10.1364/OME.3.001223 | OPTICAL MATERIALS EXPRESS 1223 9. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516–1518 (2001). 10. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005). 11. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002). 12. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt. 49, 1938–1950 (2010). 13. P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of as2s3 glass at high repetition rate,” Opt. Mat. 33, 872–876 (2011). 14. S. H. Messaddeq, J. P. Brub, M. Bernier, I. Skripachev, R. Valle, and Y. Messaddeq, “Study of the photosensitivity of ges binary glasses to 800nm femtosecond pulses,” Opt. Express 20, 2824–2831 (2012). 15. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72, 1199–1209 (1982). 16. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). 17. K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys. 52, 55–69 (2011). 18. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003). 19. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586 (1998). 20. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, (2006), 257–260 (2006). 21. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16, 5481–5492 (2008). 22. P. S. Salter and M. J. Booth, “Dynamic optical methods for direct laser written waveguides,” Proc. SPIE 8613, 86130A (2013). 23. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. DeSilvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002). 24. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010). 25. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003). 26. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005). 27. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37, 470–472 (2012). 28. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-indexmismatched media,” Journal of Microscopy 192, 90–98 (1998). 29. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20, 24103 – 24114 (2012). 30. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley1, “On-chip low loss heralded source of pure single photons,” Opt. Express 21,13522 – 13532 (2013). 31. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329 – 336 (2000). 32. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 – 719 (2007). 33. G. D. Marshall, A. Jesacher, A. Thayil, M. J. Withford, and M. Booth,“Three-dimensional imaging of directwritten photonic structures,” Opt. Lett. 36, 695 – 697 (2011). #191570 $15.00 USD Received 31 May 2013; revised 11 Jul 2013; accepted 12 Jul 2013; published 7 Aug 2013 (C) 2013 OSA 1 September 2013 | Vol. 3, No. 9 | DOI:10.1364/OME.3.001223 | OPTICAL MATERIALS EXPRESS 1224

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatially resolved measurement of femtosecond laser induced refractive index changes in transparent materials.

We present a practical method to determine femtosecond laser induced refractive index changes in transparent materials. Based on an iterative Fourier transform algorithm, this technique spatially resolves the refractive index of complex structures by combining the dimensions of the modified region with the corresponding phase change extracted from far-field intensity measurements. This approach...

متن کامل

Aberration correction for direct laser written waveguides in a transverse geometry.

The depth dependent spherical aberration is investigated for ultrafast laser written waveguides fabricated in a transverse writing geometry using the slit beam shaping technique in the low pulse repetition rate regime. The axial elongation of the focus caused by the aberration leads to a distortion of the refractive index change, and waveguides designed as single mode become multimode. We theor...

متن کامل

Tomographic Phase Microscopy

In visualizing transparent biological cells and tissues, the phase contrast microscope and its related techniques have been a cornerstone of nearly every cell biology laboratory. However, phase contrast methods are inherently qualitative and lack in 3-D imaging capability. We introduce a novel tomographic microscopy for quantitative three-dimensional mapping of refractive index in live cells an...

متن کامل

Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure.

A femtosecond laser with a 1 kHz repetition rate and two different polarization states was used to fabricate low-loss waveguides in fused silica. Investigations of chemically-mechanically polished waveguide regions using near-field scanning optical microscopy revealed the presence of modifications outside the glass regions directly exposed to a circularly polarized writing laser. These waveguid...

متن کامل

Reconstrm::tion of the refractive index profile of planar waveguides using ray tracing analysis

We propose a method for refractive index profiling based on measuring coordinates and angles of laser beams passing across the waveguide layer. Calculations are performed by solving an integral equation using new global optimization methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013